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Learning	to	classify

Will	it	rain	
today?



Experimental	and	modeling	
approaches	to	rule	based	learning

Gluck	et	al.	Learning	and	Memory,	2002
Yang&Shadlen,	Nature,	2007

Feldman,	Nature 2000	
Goodman	et	al.	Cognitive	Science,	2008

Griffiths&Tenenbaum Behavioral	and	brain	sciences	2001
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• Neurological	disorders’	effect	on	learning	‘weather	prediction’
• After	training	neurons	reflect	correct	probabilities
• Complexity	correlates	with	mean	success	on	different	rules
• Prior	that	people	have	on	the	task	



How	do	individuals	learn	conceptually	
different	(deterministic)	rules?

A	single	framework	that	describes:

• Learning	dynamics

• Individual	subjects

• Conceptually	different	rules



Deterministic	binary	classification	task
labelpattern

x = x1, x2, x3, x4( )

(Cohen	&	Schneidman,	PNAS,2013)



For	n-squares
2n patterns
22n potential	(deterministic)	rules

Deterministic	binary	classification	task
labelpattern

x = x1, x2, x3, x4( )

(Cohen	&	Schneidman,	PNAS,2013)

N=4	à >65,000	rules	
N=5	à >9,000,000,000	rules



Average	reflects	rule	complexity	but	
poorly	accounts	for	individual	behavior	

N=78	subjects,	each	
learned	4	rules
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Learning	curves	are	very	diverse

Trial	#

(1	bit	rule)



X1 X2 X3 X4
Subject’s	
answers

Y

Black=-1
White=1

1	bit:	f(X1,X2,X3,X4)=X1

Pattern	features	that	span	all	rules

2 bit:	f(X1,X2,X3,X4)=X3X4

Mutual	information	measures	feature-answer	relation

3	bit:	f(X1,X2,X3,X4)=X2X3X4
4	bit:	f(X1,X2,X3,X4)=X1X2X3X4

Directly	measuring	strategies	rarely	
succeeds



Directly	measuring	strategies	rarely	
succeeds

X1 X2 X3 X4

MI	
(bits)

0

1
M
I	(bits)

0

1

Subject’s	
answers

Y
Black=-1
White=1

Compute
I(f(X);Y)



certainty featuresweight
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Internal	category	models	
introduce	features	weighting

(Cohen	&	Schneidman,	PNAS,2013)



Learning	is	a	change	in	the	
feature	weights

( )
µ

µ a
ha

¶
¶
×=D

xyp !|Learning	
rule

Prior to session Mid session Successful learning



Models	fit	behavior	well

(Cohen	&	Schneidman,	PNAS,2013)

Subject
model



Models	predict	future	answers

(Cohen	&	Schneidman,	PNAS,2013)
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Models	can	be	used	to	improve	learning
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(Cohen	&	Schneidman,	PNAS,2013)



Neuronal	correlates	of	learning	
components

To	study	learning	related	dynamics:
• Record	in	acquisition	of	new	complex	rules
• Use	conceptually	different	rules

dACC,	PFC
Reward	&	Stimulus	
Category	membership

Striatum
Feedback	(Reward,	Error)



Monkeys	learned	to	classify	binary	
patterns



We	recorded	from	dACC,	Caudate	and	
Putamen

dACC
N=309,
440

Caudate
N=98,97

Putamen
N=93,103



Monkeys	were	different	but	both	could	
learn



Spike	train	analysis	for	identifying	feature	
selective	neurons
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Feature	sensitivity	leads	to	variance	in	spiking
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Neurons	with	stable	feature	
correlations



Moving	
feature	

correlations



Moving	feature	correlations	in	failed	
sessions



More	category	correlated	neurons	in	
learned	rule	and	high	performance
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Analysis	of	high	dimension	trajectory
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Magnitudes	change	in	the	Striatum	

Category
*

*

M
ag
.	c
ha
ng
e



Directions	change	in	dACC,Cd
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Conclusions

√
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Feature based models predict individual behavior and enable 
personalized teaching

Learning manifests in high dimensional dynamics of feature 
correlations that leads to increase in category correlation

Next:
- Trajectory of single neurons
- How do neurons move together

• Describe	the	broad	range	of	behavior
• Separate	the	prior	from	simple	learning	dynamics

• Predict	behavior
• Use	models	to	choose	personalized	teaching	

sequence	

• Fraction	of	category	correlated	neurons	
• Increases	for	learned	rules
• Increases	with	performance

• Vectors	of	feature	correlation
• Increase	size	in	Putamen
• Rotate	in	dACC

Angle Size



Thank	you!
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